skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, Dong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electron-doped cuprates consistently exhibit strong antiferromagnetic correlations, leading to the prevalent belief that antiferromagnetic spin fluctuations mediate Cooper pairing in these unconventional superconductors. However, early investigations showed that although antiferromagnetic spin fluctuations create the largest pseudogap at hot spots in momentum space, the superconducting gap is also maximized at these locations. This presented a paradox for spin-fluctuation-mediated pairing: Cooper pairing is strongest at momenta where the normal-state low-energy spectral weight is most suppressed. Here we investigate this paradox and find evidence that a gossamer—meaning very faint—Fermi surface can provide an explanation for these observations. We study Nd2–xCexCuO4 using angle-resolved photoemission spectroscopy and directly observe the Bogoliubov quasiparticles. First, we resolve the previously observed reconstructed main band and the states gapped by the antiferromagnetic pseudogap around the hot spots. Within the antiferromagnetic pseudogap, we also observe gossamer states with distinct dispersion, from which coherence peaks of Bogoliubov quasiparticles emerge below the superconducting critical temperature. Moreover, the direct observation of a Bogoliubov quasiparticle permits an accurate determination of the superconducting gap, yielding a maximum value an order of magnitude smaller than the pseudogap, establishing the distinct nature of these two gaps. We propose that orientation fluctuations in the antiferromagnetic order parameter are responsible for the gossamer states. 
    more » « less
  2. Abstract During a band-gap-tuned semimetal-to-semiconductor transition, Coulomb attraction between electrons and holes can cause spontaneously formed excitons near the zero-band-gap point, or the Lifshitz transition point. This has become an important route to realize bulk excitonic insulators – an insulating ground state distinct from single-particle band insulators. How this route manifests from weak to strong coupling is not clear. In this work, using angle-resolved photoemission spectroscopy (ARPES) and high-resolution synchrotron x-ray diffraction (XRD), we investigate the broken symmetry state across the semimetal-to-semiconductor transition in a leading bulk excitonic insulator candidate system Ta2Ni(Se,S)5. A broken symmetry phase is found to be continuously suppressed from the semimetal side to the semiconductor side, contradicting the anticipated maximal excitonic instability around the Lifshitz transition. Bolstered by first-principles and model calculations, we find strong interband electron-phonon coupling to play a crucial role in the enhanced symmetry breaking on the semimetal side of the phase diagram. Our results not only provide insight into the longstanding debate of the nature of intertwined orders in Ta2NiSe5, but also establish a basis for exploring band-gap-tuned structural and electronic instabilities in strongly coupled systems. 
    more » « less
  3. Two new efficient algorithms for computing greatest common divisors (gcds) of parametric multivariate polynomials over k[U][X]are presented. The key idea of the first algorithm is that the gcd of two non-parametric multivariate polynomials can be obtained by dividing their product by the generator of the intersection of two principal ideals generated by the polynomials. The second algorithm is based on another simple insight that the gcd can be extracted using the generator of the ideal quotient of a polynomial with respect to the second polynomial. Since the ideal intersection and ideal quotient in these cases are also principal ideals, their generators can be obtained by computing minimal Gröbner bases of the ideal intersection and ideal quotient, respectively. To avoid introducing new variables which can adversely affect the efficiency, minimal Gröbner bases computations are performed on modules. Both of these constructions generalize to the parametric case as shown in the paper. Comprehensive Gröbner system constructions are used for the parametric ideal intersection and ideal quotient using the Kapur-Sun-Wang’s algorithm. It is proved that whether in a minimal comprehensive Gröbner system of a parametric ideal 20intersection or in that of a parametric ideal quotient, each branch of the specializations corresponds to a principal parametric ideal with a single generator. Using this generator, the parametric gcd of that branch is obtained by division. For the case of more than two parametric polynomials, we can use the above two algorithms to compute gcds recursively, and get an extended algorithm by generalizing the idea of the second algorithm. Algorithms do not suffer from having to apply expensive steps such as ensuring whether parametric polynomials are primitive w.r.t. the main variable as used in both the algorithms proposed by Nagasaka (ISSAC, 2017). The resulting algorithms are not only conceptually simple to understand but are more efficient in practice. The proposed algorithms and both of Nagasaka’s algorithms have been implemented in Singular, and their performance is compared on a number of examples. 
    more » « less
  4. Abstract Current efforts in the proteolysis targeting chimera (PROTAC) field mostly focus on choosing an appropriate E3 ligase for the target protein, improving the binding affinities towards the target protein and the E3 ligase, and optimizing the PROTAC linker. However, due to the large molecular weights of PROTACs, their cellular uptake remains an issue. Through comparing how different warhead chemistry, reversible noncovalent (RNC), reversible covalent (RC), and irreversible covalent (IRC) binders, affects the degradation of Bruton’s Tyrosine Kinase (BTK), we serendipitously discover that cyano-acrylamide-based reversible covalent chemistry can significantly enhance the intracellular accumulation and target engagement of PROTACs and develop RC-1 as a reversible covalent BTK PROTAC with a high target occupancy as its corresponding kinase inhibitor and effectiveness as a dual functional inhibitor and degrader, a different mechanism-of-action for PROTACs. Importantly, this reversible covalent strategy is generalizable to improve other PROTACs, opening a path to enhance PROTAC efficacy. 
    more » « less